翻訳と辞書 |
Plane at infinity : ウィキペディア英語版 | Plane at infinity
In projective geometry, a plane at infinity refers to the hyperplane at infinity of a three dimensional projective space or to any plane contained in the hyperplane at infinity of any projective space of higher dimension. This article will be concerned solely with the three dimensional case. ==Definition== There are two approaches to defining the ''plane at infinity'' which depend on whether one starts with a projective 3-space or an affine 3-space. If a projective 3-space is given, the ''plane at infinity'' is any distinguished projective plane of the space. This point of view emphasizes the fact that this plane is not geometrically different than any other plane. On the other hand, given an affine 3-space, the ''plane at infinity'' is a projective plane which is added to the affine 3-space in order to give it closure of incidence properties. Meaning that the points of the ''plane at infinity'' are the points where parallel lines of the affine 3-space will meet, and the lines are the lines where parallel planes of the affine 3-space will meet. The result of the addition is the projective 3-space, . This point of view emphasizes the internal structure of the plane at infinity, but does make it look "special" in comparison to the other planes of the space. If the affine 3-space is real, , then the addition of a real projective plane at infinity produces the real projective 3-space .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Plane at infinity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|